《重磅!AI解決生物學50年大挑戰,破解蛋白質分子折疊問題》 機器之心Pro萬象大會年度獲獎創作者,機器之心官方帳號蛋白質對於生命至關重要,它們是由氨基酸鏈組成的大型複雜分子,其作用取決於自身獨特的 3D 結構。弄清蛋白質折疊成何種形狀被稱為「蛋白質折疊問題」。在過去 50 年裏,蛋白質折疊一直是生物學領域的重大挑戰。DeepMind 的 AlphaFold 讓人類在這一問題上取得了重要突破。在今年的國際蛋白質結構預測競賽 CASP 中,DeepMind 開發的 AlphaFold 最新版本擊敗了其他選手,在准確性方面比肩人類實驗結果,被認為是蛋白質折疊問題的解決方案。這一突破證明了 AI 對於科學發現,尤其是基礎科學研究的影響。CASP 競賽自由建模類別中的兩個目標蛋白質示例。AlphaFold 能夠預測出高度准確的蛋白質結構。這些令人振奮的結果開啟了生物學家使用計算結構預測作為科研主要工具的時代。DeepMind 提出的方法對於某些重要的蛋白質類別尤其有用,例如膜蛋白(membrane protein)。膜蛋白很難結晶,因此很難通過實驗方法來確定其結構。該計算工作代表了在蛋白質折疊這一具備 50 年歷史的生物學問題上的驚人進展,比該領域人士成功預測蛋白質折疊結構早了幾十年。我們將很興奮,它能從多個方面對生物學研究帶來基礎性改變。——Venki Ramakrishnan 教授(諾貝爾獎得主,英國皇家學會會長)DeepMind 這樣解決蛋白質折疊問題2018 年,DeepMind 團隊使用初始版 AlphaFold 參加 CASP13 比賽,取得了最高的准確率。之後,DeepMind 將 CASP13 方法和相關代碼一並發表在 Nature 上。而現在,DeepMind 團隊開發出新的深度學習架構,並使用該架構參加 CASP14 比賽,達到了空前的准確率水平。這些方法從生物學、物理學、機器學習,以及過去半個世紀眾多科學家在蛋白質折疊領域的工作中汲取靈感。我們可以把蛋白質折疊看作一個「空間圖」,節點表示殘基(residue),邊則將殘基緊密連接起來。這個空間圖對於理解蛋白質內部的物理交互及其演化史至關重要。對於在 CASP14 比賽中使用的最新版 AlphaFold,DeepMind 團隊創建了一個基於注意力的神經網絡系統,並用端到端的方式進行訓練,以理解圖結構,同時基於其構建的隱式圖執行推理。該方法使用進化相關序列、多序列比對(MSA)和氨基酸殘基對的表示來細化該圖。通過迭代這一過程,該系統能夠較強地預測蛋白質的底層物理結構,並在幾天內確定高度准確的結構。此外,AlphaFold 還能使用內部置信度度量指標判斷預測的每個蛋白質結構中哪一部分比較可靠。DeepMind 團隊在公開數據上訓練這一系統,這些數據來自蛋白質結構數據庫(PDB)和包含未知結構蛋白質序列的大型數據庫,共包括約 170,000 個蛋白質結構。該系統使用約 128 個 TPUv3 內核(相當於 100-200 個 GPU)運行數周,與現今機器學習領域出現的大型 SOTA 模型相比,該系統所用算力相對較少。此外,DeepMind 團隊透露,他們准備在適當的時候將這一 AlphaFold 新系統相關論文提交至同行評審期刊。 AlphaFold 主要神經網絡模型架構概覽。該模型基於進化相關的蛋白質序列和氨基酸殘基對運行,迭代地在二者的表示之間傳遞信息,從而生成蛋白質結構。對現實世界的潛在影響「讓 AI 突破幫助人們進一步理解基礎科學問題」,經過 4 年的研究攻關,現在 AlphaFold 正在逐步實現 DeepMind 初創時的願景,在藥物設計和環境可持續性等領域都產生了重要的影響。馬克斯 · 普朗克演化生物學研究所所長,CASP 評估員 Andrei Lupas 教授表示:「AlphaFold 的精確模型讓我們解決了近十年來被困擾的蛋白質結構,重新啟動關於信號如何跨細胞膜傳輸的研究。」DeepMind 表示願與其他研究者合作,以進一步了解 AlphaFold 在未來幾年的潛力。除了作用於經過同行評審的論文以外,DeepMind 還在探索如何以最佳的可擴展方式為系統提供更廣泛的訪問可能。同時,DeepMind 的研究者還研究了蛋白質結構預測如何幫助人們理解一些特殊的疾病。例如,通過幫助識別存在故障的蛋白質,並推斷其相互作用的方式,來理解一些疾病的原理。這些信息能夠讓藥物開發更加精確,從而補充現有的實驗方法,並更快找到更有希望的治療方法。AlphaFold 是十分卓越的,它在預測結構蛋白質的速度和精度上有著驚人的表現。這一飛躍證明了計算方法對於生物學中的轉換研究,加速藥物研發過程都具有廣闊的前景。同時許多證據也表明,蛋白質結構預測在未來的大流行應對上是有用的。今年早些時候,DeepMind 使用 AlphaFold 預測了包括 ORF3a 在內的幾種未知新冠病毒蛋白質結構。在 CASP14 中,AlphaFold 預測了另一種冠狀病毒蛋白質 ORF8 的結構。目前,實驗人員已經證實了 ORF3a 和 ORF8 的結構。盡管具有挑戰性,並且相關序列很少,但與實驗確定的結構相比,AlphaFold 在兩種預測上都獲得了較高的准確率。除了加速對已知疾病的了解,AlphaFold 還具備很多令人興奮的技術潛力:探索數億個目前還沒有模型的數億蛋白質,以及未知生物的廣闊領域。由於 DNA 指定了構成蛋白質結構的氨基酸序列,基因組學革命使大規模閱讀自然界的蛋白質序列成為可能——在通用蛋白質數據庫(UniProt)中有 1.8 億個蛋白質序列。相比之下,考慮到從序列到結構所需的實驗工作,蛋白質數據庫(PDB)中只有大約 170000 個蛋白質結構。在未確定的蛋白質中可能有一些新的和未確定的功能——就像望遠鏡幫助人類更深入的觀察未知宇宙一樣,像 AlphaFold 這樣的技術可以幫助找到未確定的蛋白質結構。開創新的可能AlphaFold 是 DeepMind 迄今為止取得的最重要進展之一,但隨著後續科學研究的開展,依然有很多問題尚待解決。DeepMind 預測的結構並非全部都是完美的。還有很多要學習的地方,包括多蛋白如何形成複合體,如何與 DNA、RNA 或者小分子交互,以及如何確定所有氨基酸側鏈的精確位置。此外,在與他方合作的過程中,還需要學習如何以最好的方式將這些科學發現應用在新藥開發以及環境管理方式等諸多方面。對於所有致力於科學領域中計算和機器學習方法的人而言,像 AlphaFold 這樣的系統彰顯了 AI 作為基礎探索輔助工具的驚人潛力。正如 50 年前美國生物化學家 Anfinsen 提出的遠超當時科研能力所及的挑戰一樣,這個世界依然有諸多未知的方面。DeepMind 取得的這一進展令人們更加堅信,AI 將成為人類擴展科學知識邊界的最有用工具之一,同時也期待未來多年的艱苦工作能夠帶來更偉大的發現。AlphaFold 科研突破相關視頻請戳:https://v.qq.com/x/page/d3208wl42dz.html https://zhuanlan.zhihu.com/p/315497173原文鏈接:https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology 《重磅!AI解決生物學50年大挑戰,破解蛋白質分子折疊問題》完,請繼續朗讀精采文章。 喜歡 小編的世界 e4to.com,請記得按讚、收藏及分享!
音調
速度
音量
語言
重磅!AI解決生物學50年大挑戰,破解蛋白質分子折疊問題
精確朗讀模式適合大多數瀏覽器,也相容於桌上型與行動裝置。
不過,使用Chorme瀏覽器仍存在一些問題,不建議使用Chorme瀏覽器進行精確朗讀。