More  

收藏本站

電腦請使用 Ctrl + D 加入最愛
手機請使用 收藏
關閉

小編的世界 優質文選 生物

人類生物學的大突破,就這樣被 AI 做到了


字體大小:
2021年8月26日 -
:     
 

極客公園

鯤鵬計劃獲獎作者,北京傳奇極客管理咨詢有限公司,優質科技領域創作者

多年之後,當人們總結這些年的 AI 浪潮,最具應用價值突破的會是什麼?

不會是 2016 年 AlphaGo 下棋超過人類最強棋手李世石,而會是 AlphaFold2 准確預測了「蛋白質折疊」。

2020 年 12 月的「蛋白質結構預測比賽(CASP)」上,DeepMind 的 AlphaFold2 算法預測取得第一名,達到了實驗解析的精度。DeepMind 的 CEO 德米斯·哈薩比斯(Demis Hassabis) 說:「這是迄今為止 AI 在推動科學上作出的最大貢獻,我覺得這一點不誇張。」AI 在下棋上超過人類,沒有解決任何應用問題,AlphaFold2 能夠准確預測「蛋白質折疊」,則是把生物學的進程向前推動了一步。

AlphaFold2 預測出的蛋白質三維結構

「沒有折疊」的蛋白質,是一條氨基酸鏈,當它折疊成三維結構,才擁有了功能。弄清楚蛋白質怎樣折疊,是生物學研究了 50 多年的難題。CASP 的比賽規則是,告訴你蛋白質氨基酸的序列,你來預測它會折疊成什麼結構。

只有通過結構理解功能,很多難題才有可能進一步被解答。像阿爾茲海默症、老年帕金森等疾病都是由於蛋白質錯誤折疊導致的。通過解析癌細胞的蛋白質,研究治療靶點,也是更好治療癌症的希望所在。

在賽後的會議上,面對 AlphaFold2 的得分,一位年近 70 的比賽組織者感歎,「不敢相信,我竟然活了這麼久看到了這個結果。」

不久前,DeepMind 團隊在 Nature 上發布論文闡釋了算法原理,並將源代碼和預測的蛋白質數據庫公開。

算法開源後,人們看見這項突破背後的奧秘:它沒有太多新思想,而是將已有的思想用算法落地。這不是單點創新,而是工程式的綜合性創新。

集前人思想之精華,團隊作戰,多點創新。把科學家一直在做的事情,完成得前所未有得漂亮,這就是 AlphaFold2 了不起的地方。

臨門一腳:算法預測終於媲美實驗解析

計算生物學界一直試圖用算法來解決「蛋白質折疊」的預測問題。

蛋白質通常是一串 300 個以上氨基酸次第相連的鏈條。氨基酸之間通過肽鍵連接,因此,折疊未發生時,這是一條多肽鏈。神奇之處,也正是預測「蛋白質折疊」的難處,氨基酸鏈天生懂得自己存在的「姿勢」——該折疊成怎樣的三維結構。這個三維結構,決定了蛋白質功能。

科學家很早就知道,多肽鏈會趨向選擇能量最低的結構,並且能在天文數量級的可能性中快速選擇。擁有 300 個氨基酸的蛋白質,理論上可以擁有 10 的 300 次方種可能構象。而折疊自己,形成三維精准構象,只需要幾微米。

人類怎樣在無數可能性中鎖定一種?如果通過枚舉計算,即使以最快的速度依次搜索,需要的時間也會超過宇宙年齡。

科學家當然不是無能為力。隨著實驗方法解析出的蛋白質結構越來越多,科學家建立起已知的蛋白質結構庫,能夠通過同源序列對比、已知蛋白質的拓撲結構模板來進行對比建模計算。

多序列對比示意圖

在實際研究中,經常是算法和實驗雙管齊下。比如先用算法預測出一個大致不那麼准的結構,有個輪廓,再用冷凍電鏡這樣的儀器進行准確的結構解析。

冷凍電鏡是目前最先進的解析蛋白質結構工具。在新冠疫情期間,西湖大學就用它解析出新冠病毒的受體 ACE2 膜蛋白。弄清病毒受體結構,也為接下來疫苗研發打下了基礎。

一串氨基酸鏈上的每個珠子不是獨立的,它們之間會互相作用,「珠子」和「珠子」之間的互相影響和微環境,決定了氨基酸鏈如何折疊。因此,氨基酸次序、氨基酸殘基之間的距離和殘基間的互相作用,都是進行計算的基礎信息。

AphaFold2 和之前的算法一樣,也是利用這些信息計算來預測。

它的成功還告訴我們:當計算機技術、工程技術、大數據、神經網絡等方式應用到生物學領域,將帶來前所未有的成果。這正是「合成生物學」正在做的事。

合成生物學至今僅有二十年歷史,目前甚至沒有完全劃定研究對象的範圍。但在研究方法上,合成生物學有共識,就是將工程性技術和傳統生物技術結合。

比如,解析蛋白質結構一直是結構生物學家的研究課題,DeepMind 方法中的工程學思維就是充分挖掘數據,結合不同的分析模塊,流程上反複優化以取得最優解。

令人驚歎的工程創新

人們常常說 AI 的特長在於暴力計算,但 AlphaFold2 是暴力計算和人類聰明才智的結晶。

發表在Nature的論文有 19 位並列的第一作者,其中有分子動力學、人工智能、量子化學、自然語言處理、醫療影像等各種專業的科學家。更令人意外的是,甚至還有一位擁有十年以上管理經驗的資深產品經理。但是轉念一想,這樣一個匯集多領域知識的複雜項目,有一位項目經理,也是情理之中。

從公布的算法而言,AlphaFold2 模型的獨特性在於兩點:引入雙注意力機制、實現端到端模型。前者是更加有效提取和加工數據,後者是取消了作為過渡的編碼/解碼過程,就減少了信息的損耗。這兩個想法本身並非 DeepMind 原創。

注意力機制源於自然語言處理(NLP)模型,其中的關鍵結構是特征提取器 Transformer,作用是讓模型有選擇地注意關鍵信息。在 2020 年 2 月份,Facebook 最早將 Transformer 引入蛋白質序列對比,讓神經網絡更好地對蛋白質序列建模。

在 AlphaFold2 中則使用了兩個 Transformer,因此稱為雙注意力機制。

這兩個 Transformer 負責提取不同的數據,一個在已知的蛋白質庫裏進行同源序列對比,也就是用已知的蛋白質結構做參考;另一個關注氨基酸殘基對,也就是微觀上,兩個氨基酸之間會發生怎樣的相互作用。

關鍵在於,這兩個信息路徑不是彼此獨立的,而是持續交流,這就實現了 1+1>2 的效果。經過 48 次迭代,算法最終建立出氨基酸相互作用的模型。

這就反映出整個模型設計的重要思想:信息在整個神經網絡中來回流動。換句話說,這部分算法是為了充分在數據庫裏榨出信息。

端到端模型也是一個重要的創新之處。也就是說,輸入一個蛋白質信息,就可以輸出三維空間的預測結果,中間沒有其他編碼和解碼環節。

信息在不同的形式間轉手一次,就會帶來一次損耗。那麼更直接處理上一環節的數據,計算的結果就更准確。

此前的算法模型(包括上一版本的 AlphaFold)都會有中間環節,計算完氨基酸之間的距離後,用數據建立能量函數,然後再進行三維結構預測。整個過程,數據先被函數處理,再變成坐標軸信息。

AlphaFold2 則是直接建立每個氨基酸局部的坐標系統,由此計算蛋白質的三維結構。也就是將第一階段處理的數據直接映射到三維空間。

整個模型還用了許多其它技術來提升預測的准確性,比如創新的 Loss Fuction(損失函數),三維模型計算結果的反複優化(Recycling)……所有的技術綜合在一起,才能夠實現如此好的預測效果。

這無疑是一個大型且複雜的工程。前台展現出的是計算機技術,但是要完成這些算法設計,必須要有對生物現象的深刻理解。比如,在第一個處理信息的階段,兩個 Transformer 如何互相配合,將氨基酸殘基對的微觀信息整合進整個氨基酸序列的信息中,在寫算法時就要對折疊過程有准確的領悟。

合成生物學帶來的想象

對於合成生物學而言,工程技術不僅僅是方法,更是一種系統性思維。合成生物學家希望通過「類似於工程師建造橋梁和將人送上月球的方法,理性地設計生物系統。」

「工程科學技術不只是工具,也不僅僅是基礎研究成果的應用,而是在基礎研究中可以發揮巨大作用的重要組成部分。」中國工程院院士,計算機專家李國傑評論 AlphaFold2 突破時說。

科技發展中很重要的一部分是工具的不斷進化。結構生物學家顏寧在微博說:「在 X-射線晶體學為主要手段的時代,獲得大多數研究對象的結構本身太難了,於是很多研究者把『獲得結構』本身作為了目標,讓外行誤以為結構生物學就是解結構。」

蛋白質遵循能量最低原則,從一維結構折疊成三維結構,並形成功能。

所以預測折疊,只是理解蛋白質功能的起點。

蛋白質不是一個靜態的結構,在行使功能的過程中,它都會發生精細的構象變化,比如病毒蛋白和受體結合、靶蛋白和小分子藥物結合。理解結構和功能之間的互動關系,都是對付病毒,研發藥物的關鍵。

比如,冷凍電鏡解析出的新冠病毒的受體 ACE2 膜蛋白,就可以作為疫苗研發的靶點。

有了一個靜態結構,科學家就可以在此基礎上做更多研究。比如可以從 AlphaFold2 預測的單幀靜態結構出發,來模擬蛋白質結構的動態變化。

除此之外,有些蛋白質獨自並不形成穩定的結構,而是和其他蛋白質結合後,才形成結構和相應的功能,這樣更加複雜的結構預測,也是 AI 預測接下來努力的目標之一。

當人們對蛋白質的結構和功能足夠了解,甚至可以按需設計想要的蛋白質。有了這個技術,科學家就可以開發精准治療的靶向藥、節能環保的新材料、或者是有特殊能量轉化功能的催化劑……

「我認為這會真正改變一百年來科學家處理生物學問題的方式。研究人員不需要再耗費大量的時間和精力在解析蛋白結構上,而是可以專注於功能研究。」AlphaFold 首席研究員 John Jumper 對外媒說。

新的研究手段和方式正在改變生物學。2020 年的諾貝爾獎化學獎就頒發給了發明「Crispr」基因編輯技術的兩位科學家,這項技術帶來了一批基因編輯的生物公司,開啟了新的「基因編輯」時代。或許,人工智能驅動的生物研究也同樣會開啟新的「蛋白質編輯」時代。

責任編輯:靖宇

頭圖來源:DeepMind

本文由極客公園 GeekPark 原創發布,轉載請添加極客君(ID: geekparker)